Acute Ischaemic Stroke

CT or MR SCAN READING FORM

SCAN ID:			
DATE OF READING:			
SCAN QUALITY:	Good	Moderate Po	or Comment:
READER ID:			
TYPE OF SCAN:	CT:	Without contrast:	With contrast:
	MR:	Diffusion:	Perfusion

Note – examples and definitions will be on a separate sheet or in drop down boxes if electronic. Please tick Yes or No. Please do not leave blanks. Thank you.

1.	Is the scan completely normal?	Y	N	If YES stop here
2.	ISCHAEMIC CHANGES	Y in	N	If No go to O 10
	doubt as to whether acute or old, code as acute.	R		II NO GO IO Q. IO
3.	Which side of the brain shows ischaemic change	?		Tick R and L if both
4.	Classify signs of ischaemic change in the ma lesion (if more than one recent lesion).	in		
	(see examples)	v	N	
	(see examples) a) loss of grey/white matter cortex definition	Y	N	N/A
	(see examples)a) loss of grey/white matter cortex definitionb) loss of basal ganglia outline	Y	N	N/A

5. Classify site and size of ischaemic lesion (see examples)

a) site

- M =MCA*
- AS =Infarct of up to half of ACA territory
- AL =Infarct of more than half of ACA territory
- PS =Infarct of up to half of PCA territory
- PL =Infarct of more than half of PCA territory
- MAS=M+AS*
- MAL=M+AL*
- MPS=M+PS*
- MPL=M+PL*

MAP=Infarct of whole MCA, ACA and PCA territories

- L =Lacune*
- В =Borderzone*
- С =Cerebellum*
- S =Brainstem*
- CS =Cerebellum and brainstem

* code sub-territory sites in b

sub-territory sites b)

MCA sub-territory codes

1=small cortical infarct 2=basal ganglia infarct (>2x2x2cm) 3=infarct of white matter lateral to the lateral ventricle (>2x2x2cm) 4=infarct of anterior half of peripheral MCA territory 5=infarct of the posterior half of peripheral MCA territory 6=infarct of the whole of peripheral MCA territory 7=6+infarct of lateral part of basal ganglia 8=infarct of whole of MCA territory

Lacunar/Borderzone sub-territory codes

- 9=lacune in internal capsule/lentiform
- 10=lacune in internal border zone 11=lacune in centrum semiovale
- 12=lacune in thalamus
- 13=lacune in brainstem, inc. pons (not shown)
- 14=anterior (mainly) border zone
- 15=posterior (mainly) border zone

Cerebellum sub-territory codes

16=small cortical (not shown) 17=<1/2 hemisphere (medium) (not shown) 18=>1/2 hemisphere (not shown)

Brainstem sub-territory codes

11=small, i.e.<1/2 medulla (not shown) 12=extensive, i.e. pons + medulla (not shown)

degree of mass effect c)

Mass effect grading 0=no swelling

- 1=effacement of the sulci overlying the infarct 2=1+minor effacement of adjacent lateral ventricle
- 3=1+complete effacement of lateral ventricle
- 4=1+effacement of the lateral and third ventricle
- 5=4+shift of the midline away from the side of the ventricle
- 6=5+effacement of the basal cisterns

Diagrams © J Wardlaw, Univ of Edinburgh

IF INFARCT IS IN THE MCA TERRITORY ANSWER Q.6 &Q.7 (if not go to Q.8):

6. In your opinion does the new acute ischaemic change involve more than 1/3 of the MCA territory? 7. ASPECTS for the MCA territory (see examples) **ASPECT Score:** Please indicate if each of the MCA areas shown opposite, in the hemisphere that you think is ischaemic, are normal or show some signs of an infarct (abnormal). (NB: Does not include areas A or P) Norm Abnorm Caudate (C) Lentiform (L) Insula (I) Internal Capsule (IC) MCA1 (M1) MCA2 (M2) MCA3 (M3) MCA4 (M4) MCA5 (M5) MCA6 (M6) Diagrams and score taken from Lancet 2000;355:1670-1674 8. Is there a second (discrete) recent ischaemic lesion? If No go to Q.10 9. Describe second ischaemic lesion: HYPERDENSE VESSEL SIGN Ν 10. Is there a hyperdense artery? If No go to Q.12 (see example in question 4) 11. Name hyperdense artery:

HAEMORRHAGIC CHANGES

	HAEMORRHAGIC CHANGES		Υ	Ν			
12.	Is there any haemorrhage anywhere?				f No go to G	0.14	
13.	Classify haemorrhage (if more than one haemorrhage, tick all present – indicate order of significance) :	Y	N	Or (insert 1, 2, 3 your estimate of impo	der 3 to indicate e of the order rtance)	Size of Haen (max diau	natoma n.):
	a) petechial haemorrhage (example 1 or 2 below)						
	 b) significant haemorrhagic transformation of infarct (i.e. underlying infarct still visible) (example 3 below) 						
	c) parenchymal haematoma (i.e. no infarct visible)						
	 d) parenchymal haematoma clearly remote from infarct 						
	e) subdural haematoma						
	f) subarachnoid haemorrhage						
	g) extradural haemorrhage						
	h) In your opinion, is the haemorrhage a major component of the infarct which is likely to have worsened mass effect or involved more brain in the damage present and so worsened symptoms, or if remote from the infarct, likely to have contributed significantly to the burden of brain damage?			5	² Haematom	a Haemate	oma
	Diagrams © J Wardlaw, Univ of Edinburgh				with no or only slig mass effec	with defi ht mass eff t compres	nite fect ssing

surrounding tissue

CENTRAL reduction in brain tissue

None

Modest

Severe

CORTICAL reduction in brain tissue

None

© J Wardlaw, U of Edinburgh

Approach validated in Eur Radiol 2008;19:177-183

Severe

PERIVENTRICULAR LUCENCIES

Ν 16. Are there any periventricular lucencies? If No go to Q.18 Posterior Anterior Ant. & Post 17. Classify extent of white matter lucency lucencies lucencies lucencies Anterior white matter 0,1,2 а. 0= no lucency 1= lucency restricted to region adjoining ventricles 2= lucency covering entire region from lateral ventricle to cortex Slice through Slice through Slice through b. 0,1,2 Posterior white matter choroid plexus cella media centrum semiovale 0= no lucency 1= lucency restricted to region adjoining ventricles 2= lucency covering entire region from lateral ventricle to cortex

Υ

(diagrams from van Swieten et al. JNNP 1990;53:1080-1083)

$$\mathbf{AWM} = \mathbf{1} \qquad \mathbf{PWM} = \mathbf{0}$$

$$\mathbf{AWM} = 2 \qquad \mathbf{PWM} = 1$$

	OLD VASCULAR LESIONS	Y	Ν			
18.	Are there any old vascular lesions?			If No go to Q.20		
19.	Classify old vascular lesion(s):	Y	<u>N</u>			
	a) old cortical infarct(s)					
	b) old striatocapsular infarct(s)					
	c) old borderzone infarct(s)					
	d) old lacunar infarct(s)					
	e) old brainstem/cerebellar infarct(s)					
	f) probable old haemorrhage					
	NON-STROKE LESIONS	Y	N			
20.	Is there a non-stroke lesion, which could have accounted for the patient's stroke syndrome?			If No go to Q.22		
21.	Classify non-stroke lesion:	Y	N			
	a) cerebral tumour					
	b) encephalitis					
	c) cerebral abscess					
	d) other (e.g. contusion)			Specify Other:		

22. COMMENT:

For further information, contact <u>joanna.wardlaw@ed.ac.uk</u>. This form is freely available for academic use but please acknowledge the source and any specific references therein.