Common Image Processing Techniques 1

Semester 2 / Commences January

20 Credits

Each Course is composed of Modules & Activities.

Modules:

Measure Lesion Size	NI4R
Assess Volume Qualitative	NI4R
Assess Volume Quantitative	NI4R
White Matter Lesion Rating – Qualitative	NI4R
White Matter Lesion Rating – Quantitative	NI4R
MR Spectroscopy – Advanced	NI4R
Multi-centre studies and combing data sets	NI4R
MR Permeability Imaging	NI4R

Each Module is composed of Lectures, Reading Lists, MCQ self-assessments, & Discussion Boards.

The summary table above shows whether the modules are available in the Neuroimaging for Research (NI4R) programme or the Imaging (IMSc) programme or indeed both.

Modules:

Measure Lesion Size:

Measurement

Assess Volume Qualitative:

Assessing whole brain volume Assessing regional brain volumes

Assess Volume Quantitative:

Volumetric measurement principles Whole brain volume, ventricular volume and intracranial area measurement Temporal lobes and amygdalohippocampal volume measurement

White Matter Lesion Rating – Qualitative:

An introduction to white matter lesions MR white matter lesion rating scales – Part A MR white matter lesion rating scales – Part B

White Matter Lesion Rating – Quantitative:

Quantitative assessment – approaches and limitations Individualising and semiautomating thresholding

MR Spectroscopy – Advanced:

Advanced 1 Advanced 2

Multi-centre studies and combining data sets:

Methods for combining large image datasets

MR Permeability Imaging:

MR Permeability Imaging

We can also provide a more detailed syllabus showing what lectures will be given for each module, and the learning outcomes for each module.

Measure Lesion Size (NI4R only)

Lecture 1

Title: Measurement

Description: Principles and problems

Author(s): Dr. Andrew Farrall

Learning Objectives

- Outline how and why measurements are made from radiological images
- Describe the different sources of error which affect measurements

Assess Volume Qualitative (NI4R only)

Lecture 1

Title: Assessing whole brain volume

Description: Methods for assessing whole brain volume Author(s): Prof. Joanna Wardlaw, Dr. Karen Ferguson

Learning Objectives

- Recognise common patterns of brain volume loss with age
- Outline the principles of rating volume loss using scales
- Describe specific scales
- Rate scans using the scales

Lecture 2

Title: Assessing regional brain volumes

Description: Methods for assessing regional brain volumes Author(s): Prof. Joanna Wardlaw, Dr. Karen Ferguson

Learning Objectives

- Recognise patterns of focal brain atrophy
- Outline methods of rating regional volume loss
- Describe several specific scales
- Apply these scales to rating scans
- Discuss differences between quantitative and qualitative scales and why this may be important in research and clinical practice

Assess Volume Quantitative (NI4R only)

Lecture 1

Title: Volumetric measurement principles

Description: General principles behind measuring brain volume

Author(s): Dr Karen Ferguson, Prof. Joanna Wardlaw

Learning Objectives

Outline the general approach to measuring brain volumes quantitatively

Lecture 2

Title: Whole brain volume, ventricular volume and intracranial area measurement

Description: Steps involved in measuring whole brain volume

Author(s): Dr Karen Ferguson, Prof. Joanna Wardlaw

Learning Objectives

 Describe how to measure whole brain volumes, ventricular volumes quantitatively and intracranial area as a proxy for intracranial volume

Lecture 3

Title: Temporal lobes and amygdalohippocampal volume measurement

Description: Steps involved in measuring temporal lobes and amygdalohippocampal volume

Author(s): Dr Karen Ferguson, Prof. Joanna Wardlaw

Learning Objectives

Describe how to measure temporal lobe and amygdalohippocampal volumes quantitatively

White Matter Lesion Rating – Qualitative (NI4R only)

Lecture 1

Title: An introduction to white matter lesions

Description: Types of white matter lesions and methods of quantifying them Author(s): Joanna Wardlaw, Karen Ferguson, with assistance from Susie Shenkin **Learning Objectives**

- Describe age-related white matter changes, including variation in type and appearance
- Outline what they are associated with and their causes
- Recognise the different types of white matter lesions on brain images
- Briefly outline rating scales used for white matter lesion rating

Lecture 2

Title: MR white matter lesion rating scales-Part A

Description: A description of commonly used MR scales for quantifying white matter lesions with examples

Author(s): Joanna Wardlaw and Karen Ferguson

Learning Objectives

- Describe different MR scales used for rating WML
- Rate WML using these scales
- Discuss the principles of subjective rating of any imaging feature
- Explain ceiling and floor effects

Lecture 3

Title: MR white matter lesion rating scales-Part B

Description: A description of commonly used MR scales for quantifying white matter lesions with examples

Author(s): Joanna Wardlaw and Karen Ferguson

Learning Objectives

- Describe different MR scales used for rating WML
- Describe scales that can be used with CT or MR
- Describe scales that can be used to rate change in white matter lesions over time
- Compare scales
- Rate WML using these scales

White Matter Lesion Rating – Quantitative (NI4R only)

Lecture 1

Title: Quantitative assessment- approaches and limitations

Description: Outlining quantitative approaches to white matter lesion rating

Author(s): Prof. Joanna Wardlaw

Learning Objectives

- Outline several approaches to measuring white matter lesion volume quantitatively
- Discuss problems with these approaches
- Analyze relative merits of quantitative vs qualitative approaches

Lecture 2

Title: Individualising and semi-automating thresholding

Description: Approaches being used locally to improve the volume measurement

Author(s): Prof. Joanna Wardlaw

Learning Objectives

• Outline several approaches to improve the quantitative volume measurement

MR Spectroscopy – Advanced (NI4R only)

Lecture 1

Title: Advanced 1

Description: Chemical Shift Imaging & 2D Spectroscopy

Author(s): Dr. Kristin Haga Learning Objectives

Understand the limitations of traditional 1D, 1H MRS

- Describe "Chemical Shift Imaging" and list a couple of its applications
- Discuss some of the other (non 1H) nuclei that can be used in MRS studies
- Explain what is meant by "J-coupling" in 2D MRS
- Consider some of the advantages and limitations of advanced MRS methods

Lecture 2

Title: Advanced 2

Description: Multi-nuclear spectroscopy & applications of spectroscopy

Author(s): Dr. Kristin Haga **Learning Objectives**

- Discuss some of the other (non 1H) nuclei that can be used in MRS studies
- Understand applications of spectroscopic techniques in clinical situations

Multi-centre studies and combining data sets (NI4R only)

Lecture 1

Title: Methods for combining large image datasets

Description: The need for methods to combine image data from multiple subjects and scanners, problems encountered and methods for overcoming these.

Author(s): Dr. Dominic Job

Learning Objectives

- Describe reasons for combining image datasets
- Describe the range of problems encountered
- Outline current and developing methods for overcoming these problems

MR Permeability Imaging (NI4R only)

Lecture 1

Title: MR Permeability Imaging

Description: Imaging endothelial permeability

Author(s): Dr. Paul Armitage Learning Objectives

- Define what permeability is
- Explain why permeability is interesting to measure in the brain
- Describe how contrast agent concentration can be estimated from the signal change measured following contrast agent administration
- Describe how blood-brain barrier permeability can be estimated from temporal measurements of contrast agent concentration
- Discuss the clinical application of MR permeability imaging to tumour investigation and other disorders