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Introduction: 
 
Preterm birth is associated with long term cognitive deficits and alterations to structural 
connectivity of developing brain networks. Global network characteristics modelled 
topological properties of brain regions and the connections between them reveal 
architectures that are shared across the life course. These include small-worldness, 
clustering coefficient or rich-club coefficient1-3. In recent work, it was shown that a rich 
diversity of connectivity patterns within hierarchically equivalent nodes (hierarchical 
complexity, HC)4, is a strong signature of the adult human connectome and not a general 
property of real-world networks like several of the other standard global network metrics5. 
We aimed to determine whether the newborn brain resembles the adult in terms of HC, if 
so, whether HC is altered in association with early exposure to extrauterine life caused by 
preterm birth. 
 
Methods: 
 
Neonatal dataset: 136 neonates (77 preterm and 59 term) underwent MRI at term 
equivalent age at the Edinburgh Imaging Facility Royal Infirmary of Edinburgh. A Siemens 
MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare Erlangen, Germany) 
and 16-channel phased-array paediatric head coil were used to acquire: 3D T2-weighted 
SPACE (T2w) (voxel size = 1mm isotropic) and axial dMRI with volumes/b = 3/200, 6/500, 
64/750 and 64/2500 s/mm2 and 16 non-weighted images (2mm isotropic). 
 
Adult dataset: The HCP test-retest dataset consisting of T1-weighted and DW-MRI data 
from 45 healthy subjects. The data consist of three shells with b = 1,000, 2,000 and 3,000 
s/mm2 in 90 DW volumes and six non-weighted images per shell (1.25 mm isotropic). 
 
Processing: The neonatal dMRI volumes were denoised6; the eddy current, head 
movement and EPI geometric distortions were corrected7-9, and bias field inhomogeneity 
correction was applied10. The T2w images were processed using the minimal processing 
pipeline of the dHCP11. For parcellation, ten manually labelled subjects of the M-CRIB 
atlas12 were registered to the bias field corrected T2w using affine and SyN13, and then the 
registered labels of the ten atlases were merged using joint label fusion14 resulting in 84 
ROIs. The HCP dataset was already preprocessed, with the Desikan-Killany parcellation15, 

16. 
 

Tractography was performed using CSD with multi-tissue response function, using ACT 
and SIFT217-21. The resulting matrices were then thresholded to a density of 0.3 and 
binarized. 
 
Hierarchical complexity: Let 𝐺 = (𝑉, 𝐸) be a graph with nodes 𝑉 = {1, … , 𝑛} and links 𝐸 =



{(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉)}, and let 𝐾 = {𝑘1, … , 𝑘𝑛} be the set of degrees of 𝐺, where 𝑘𝑖 is the number 

edges adjacent to node 𝑖. Further, let 𝐾𝑝 be the set of nodes of degree 𝑝. For 

neighbourhood degree sequence 𝑠𝑖
𝑝{𝑠𝑖

𝑝(1), … , 𝑠𝑖
𝑝(𝑝)} of node 𝑖 of degree 𝑝, the HC is: 
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where 𝐷 is the number of distinct degrees in the network and 𝜇𝑝(𝑗) is the mean of the 𝑗th 
entries of all 𝑝 length neighbourhood degree sequences22. 
 
Tier analysis: A more refined analysis of HC was performed through different degree 
strengths in the network. The tiers were chosen based on peaks of the group-aggregated 
degree distributions, 4 tiers were chosen in each population (1-4) and were combined then 
into 3 Tiers (A-C) to be able to compare neonates and adults. Once tiers were defined, we 
implemented tier-based analysis comparing Tiers 1-4 between term and preterm born and 
A-C between neonates and adults. 
 
 
Statistical analysis: To control for the differences in degree distribution between individual 
connectomes and the different populations (term and preterm born and adult), we used 
configuration models23. Wilcoxon rank sum tests were carried out to assess the 
significance of the differences of distributions of network index values between the 
structural connectomes and configuration models. FDR threshold was 0.0264. The effect 
sizes were also computed with Cohen's 𝑑. 
 
Results: 
 
Figure 1 shows the group-aggregated degree distributions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Aggregated degree distributions of neonatal groups, top, and the adult group, bottom. Four 
distinct peaks are noted in the degree distributions of neonatal connectomes and corresponding peaks are 
also seen in the adult connectomes. These are taken as the natural tiers and black lines indicating the 
minima between peaks are taken as the thresholds between tiers. Greater consistency between neonates 
and adults is found by consolidating the tiers as indicated by Tier A, B and C. 

 
HC was significantly larger in term-born neonates than preterm-born neonates (𝑝 = 

0.0148, 𝑑 = 0.3946). Tier 3 showed a corresponding significant difference in HC with a 
stronger effect size (𝑝 = 2.63×10−4, 𝑑 = 0.6230), while no difference was evident in any 
other tier. Global HC of adults was larger than term born neonates (𝑝 = 2.63×10−11, 𝑑 = 
1.2859) (Fig 2). The findings were confirmed in comparisons with configuration models 

Tier 2 Tier 1 Tier 3 Tier 4 

Tier 2 Tier 1 Tier 3 Tier 4 



with term-born connectomes having significantly larger HC than their configuration models, 
an effect which was not seen in preterm infants (Fig 3). 
 

 
Figure 2: Distribution of the global HC for the three populations as rain cloud plots (top) and HC of the four 
tiers in neonatal populations (bottom). Wilcoxon rank sum p-values and Cohen’s d values are shown for 
preterm vs term (all) and term vs adult (top). 

 
 



 
Figure 3:  Distributions of HC globally (top) and for the different tiers of the three 
populations.  Grey, yellow and orange colours represent values for adults, term born and preterm born 
neonates, respectively, while blue represents the values of the HC for the corresponding configuration 
models. Wilcoxon rank sum p-values and Cohen’s d values are shown top right of each plot. Axes as in 
bottom right plot. 

 
 
Discussion and conclusions: 
 
The HC is already present at birth, but still needs to develop to reach the full level of 
complexity of the adult brain. Preterm babies have different values compared to term 
babies, in fact the values are not different from a random network. Tier 3 could be 
discerned as the main cause of the global effect between term and preterm. Interestingly, 
Tier A shows lower HC than a random network, indicating that the high levels of hierarchy 
present a structured organization. These findings are in agreement with intuitive notions of 
natural and human hierarchies: order may be necessary at the top to create structural 
stability, and this order at top level is resilient to prematurity. All together is consistent with 
the hypothesis that term born babies have a greater maturation than preterm born babies, 
with topological properties going in the direction of the properties displayed by the adult 
connectomes.  
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