Techniques and Physics

Semester 1 / Autumn

20 Credits

Each Course is composed of Modules & Activities.

Mo	odu	les	1

Imaging Basics	NI4R	IMSc	AMIA	PETMR
CT Basics	NI4R	IMSc	AMIA	PETMR
MR Basics	NI4R	IMSc	AMIA	PETMR
Contrast Agents in Imaging	NI4R	IMSc	AMIA	PETMR
Ultrasound Basics		IMSc		PETMR
MR Spectroscopy Basics & advanced	NI4R		AMIA	PETMR
MR Diffusion Imaging	NI4R		AMIA	PETMR
Functional Imaging Basics	NI4R		AMIA	PETMR
SPECT & PET	NI4R	IMSc	AMIA	PETMR
Light Microscopy Basics		IMSc	AMIA	PETMR
Images – Fundamentals	NI4R	IMSc	AMIA	PETMR
MR dynamic techniques	NI4R	IMSc	AMIA	PETMR
MR perfusion imaging				

- MR perfusion imaging
- MR permeability imaging

Each Module is composed of Lectures, Reading Lists, MCQ self-assessments, & Discussion Boards.

These Modules are taught on the following Programmes, or are incorporated into blended Courses which teach students enrolled outwith the Edinburgh Imaging Academy:

- NI4R Neuroimaging for Research programme
- IMSc Imaging programme
- AMIA Applied medical image analysis
- PET-MR PET-MR principles & applications

Techniques and Physics - Modules include:

Imaging Basics:

History: past to present Terminology and orientation Anatomy basics Orientation to body imaging

CT Basics:

CT Basics Grey scale perception – Technical Grey Scale Perception – Applications CT advanced techniques 1 CT advanced techniques 2

MR Basics

MR Basics Physics T1 & T2 Localisation

k-Space

Contrast agents in Imaging

Contrast Agents in Imaging: CT Contrast Agents MR Contrast Agents Ultrasonic contrast agents

Ultrasound Basics:

Introduction to Ultrasound Imaging Ultrasound Waves Basic beam formation Transducer basics Array transducers and beam forming 1 Array transducers and beam forming 2

MR Spectroscopy Basics:

Introduction

Techniques

MR Spectroscopy Advanced:

Advanced 1 Advanced 2

MR Diffusion Imaging: MR Diffusion Imaging

MR Dynamic Techniques

MR Permeability Imaging: MR Permeability Imaging Perfusion Imaging: Basics Advanced

Functional Imaging Basics:

Neurophysiology techniques Neurovascular techniques Applications: Linking Sensation to Spiking

SPECT & PET

Physics Scanning

Light Microscopy Basics: Introduction into Light Microscopy

Images – Fundamentals:

Imaging Systems Images Image Processing Basics Image Perception

Further details of modules that may be within your Techniques and Physics course.

Imaging Basics

Lecture 1

Title: History: past to present

Description: Historical perspective through to modern imaging departments Author(s): Dr. Andrew Farrall

Learning Objectives

- Outline the historical development of imaging
- List the techniques used in modern imaging departments
- Identify which techniques do or do not use ionizing radiation
- Distinguish between techniques which use ionizing radiation

Lecture 2

Title: Terminology and orientation

Description: Becoming familiar with how radiology looks at the body Author(s): Dr. Andrew Farrall

Learning Objectives

• Use and interpret radiological orientations, directions and convention

Lecture 3

Title: Anatomy basics

Description: A look at common anatomical landmarks and features Author(s): Dr. Andrew Farrall

Learning Objectives

- Identify common anatomical landmarks and features including:
- Anatomical landmarks of the head surface anatomy
- Skull features
- Lobes, fissures and sulci
- Grey and white matter
- Arterial supplies to the brain

Lecture 4

Title: Orientation to body imaging

Description: A look at common body imaging descriptors and features Author(s): Dr. Michael Jackson, Dr. Andrew Farrall

- Recognise the three conventional anatomical planes: axial, coronal and sagittal as they relate to the body
- Appreciate the direct relevance of these planes to cross-sectional imaging
- Be aware of the concept of the anatomical position
- Understand the terms proximal and distal in different settings
- Be familiar with the meaning of the anatomical terms dorsal, ventral and cranio-caudal

CT Basics

Lecture 1

Title: Computed Tomography Basics Description: History, principles and practice Author(s): Dr. Andrew Farrall

Learning Objectives

- Outline the historical development of scanners
- State the difference between generations of scanners
- Define "pitch" and collimation
- Describe attenuation in CT
- Outline back projection reconstruction
- Outline beam hardening artefact •
- Discuss applications of modern CT techniques

Lecture 2

Title: Grey scale perception - Technical

Description: Physics and other relevant concepts behind the grey scale in radiology Author(s): Dr. Andrew Farrall

Learning Objectives

- Describe the pathway of perception
- Explain radiological imaging and how it uses the grey scale to represent images •

Lecture 3

Title: Grey Scale Perception - Applications

Description: How perceiving the grey scale has important clinical ramifications Author(s): Dr. Andrew Farrall

Learning Objectives

- Describe how the human eye perceives contrast and brightness off grey scale images
- Explain factors which alter human perception of grey scale images
- Discuss the limitations of grey scale imaging

Lecture 4

Title: CT advanced techniques 1

Description: Maximum and minimum intensity projections Author(s): Dr. Michael Jackson, Dr. Andrew J. Farrall Learning Objectives

- Describe production of maximum (and minimum) intensity projection images
- Describe the effect of varying slice thickness on MIPs and MinIPs
- Explain the difference between intensity projection and windowing
- Demonstrate clinical uses for intensity projection images
- Describe the limitations of intensity projection images

Lecture 5

Title: CT advanced techniques 2

Description: Multi-planar and 3D reconstructions Author(s): Dr. Michael Jackson, Dr. Andrew J. Farrall

- Understand the role of multi-planar reformatting
- Discuss the advantages and limitations of 3D CT reconstructions
- Be aware of 3D editing techniques
- Name endoluminal visualisation techniques
- Understand differences between orthographic rendering and immersive perspective rendering
- Explain when 3D techniques are complementary to conventional imaging

MR Basics

Lecture 1

Title: Physics

Description: Basic principles behind MR Author(s): Dr. Paul Armitage, Dr. Andrew Farrall Learning Objectives

• Describe "spin" and its relevance to Magnetic Resonance

- Explain the relevance of protons in MR
- Know the Larmor frequency equation
- Describe "relaxation"
- Define the "Free Induction Decay"
- Distinguish between T1 & T2

Lecture 2

Title: T1 & T2

Description: Using relaxation parameters in imaging Author(s): Dr. Paul Armitage, Dr. Andrew Farrall

Learning Objectives

- Recognise different tissues have different T1 & T2 values
- Understand how the differences are exploited to generate image contrast
- Differentiate between T1 weighted & Proton Density weighted imaging
- Understand what T1 imaging is useful for clinically
- Understand T2 weighted imaging
- Understand what T2 imaging is useful for clinically
- Discuss how FLAIR & STIR imaging relate to each other
- Know why FLAIR & STIR imaging are used

Lecture 3

Title: Localisation

Description: Overview of how MR signal is associated with the point from which it originates Author(s): Dr. Paul Armitage, Dr. Andrew Farrall

Learning Objectives

- Explain MR slice selection
- Describe how localization is performed in the MR image plane
- Recognise the difference between frequency and phase encoding
- State the difference between pixel and voxel

Lecture 4

Title: k-Space

Description: Relating raw MR data to the image we see

Author(s): Dr. Andrew Farrall, imaging provided by Dr. Trevor Carpenter

- Explain what information lies in k-space
- Describe how k-space relates to MR images
- State the role of the Fourier Transform
- List some common artefacts in MR images which result from errors and problems in kspace

Contrast Agents in Imaging

Lecture 1

Title: CT contrast agents

Description: Contrast agent use, administration and phases

Author(s): Dr. Michael Jackson

Learning Objectives

- Outline the technical aspects of contrast use in CT
- Identify generic molecular structure of intravascular CT contrast agents
- Evaluate different methods by which IV contrast can be administered
- Demonstrate the importance of timing the image acquisition in relation to the contrast phase
- Recognise the variety of mechanisms by which contrast aids image interpretation

Lecture 2

Title: MR Contrast Agents

Description: Means and ways of altering tissue visibility in MR

Author(s): Dr. Andrew Farrall

Learning Objectives

- Define what permeability is
- Explain why permeability is interesting to measure in the brain
- Describe how contrast agent concentration can be estimated from the signal change measured following contrast agent administration
- Describe how blood-brain barrier permeability can be estimated from temporal measurements of contrast agent concentration
- Discuss the clinical application of MR permeability imaging to tumour investigation and other disorders

Lecture 3

Title: Ultrasonic contrast agents

Description: Definition, imaging and research Author(s): Dr. Carmel Moran

- Define ultrasonic contrast agents composition and size
- Interpret the interaction of contrast agents in the ultrasound beam
- Evaluate contrast-specific imaging modalities
- Assess research in ultrasonic contrast agents

Ultrasound Basics

Lecture 1

Title: Introduction to Ultrasound Imaging

Description: Introduction to ultrasound principles Author(s): Prof. Peter Hoskins

Learning Objectives

- Identify main components of an ultrasound system
- Compare ultrasound to other imaging techniques •
- Describe ultrasound imaging modes
- State what the main operation principle is of modern ultrasound systems

Lecture 2

Title: Ultrasound waves

Description: Ultrasound frequency, velocity, wavelength and wave phenomena Author(s): Prof. Peter Hoskins

Learning Objectives

- Describe ultrasound characteristics such as frequency, velocity, and wavelength
- Discuss wave phenomena relevant to clinical use •
- Explain phenomena of propagation of ultrasound through tissues

Lecture 3

Title: Basic beam formation

Description: Understanding ultrasound beam formation Author(s): Prof. Peter Hoskins Learning Objectives

- Outline the Huygens principle
- Describe ultrasound beam shapes
- Describe mechanical focussing
- Discuss non-linear propagation

Lecture 4

Title: Transducer basics

Description: Piezoelectric principle and components of a transducer Author(s): Prof. Peter Hoskins

- Explain the piezoelectric principle
- Describe the components of a transducer

Lecture 5

Title: Array transducers and beam forming 1

Description: Formation, focussing and steering of the beam using multi-element arrays Author(s): Prof. Peter Hoskins

Learning Objectives

- Describe beam formation, focussing & steering
- Explain side lobes
- Outline focussing mechanisms
- Define apodisation

Lecture 6

Title: Array transducers and beam forming 2

Description: Formation, focussing and steering of the beam using multi-element arrays Author(s): Prof. Peter Hoskins

- Describe phased array transducers
- Explain grating lobes
- Demonstrate high frame rate beam formation
- Discuss transducers for 3D imaging

MR Spectroscopy Basics

Lecture 1

Title: Introduction

Description: MR review, & comparison of MR Spectroscopy with MR Imaging Author(s): Dr. Katherine Lymer

Learning Objectives

- Review MR slice selection and understand its relevance to MR spectroscopy (MRS)
- Explain why good signal-to-noise (SNR) in MRS is critical
- Outline how SNR is optimised in MRS
- Define shimming
- Describe water suppression
- Explain why water suppression is important

Lecture 2

Title: Techniques

Description: Generating spectra; identifying metabolites; clinical applications Author(s): Dr. Katherine Lymer

Learning Objectives

- Know available nuclei for MRS
- Name common localisation sequences
- Describe Chemical Shift Imaging (CSI)
- Name major metabolites of interest in MRS
- Identify major components of an MR spectrum
- Know applications of MRS in stroke

MR Spectroscopy – Advanced

Lecture 1

Title: Advanced 1

Description: Chemical Shift Imaging & 2D Spectroscopy Author(s): Dr. Kristin Haga

Learning Objectives

- Understand the limitations of traditional 1D, 1H MRS
- Describe "Chemical Shift Imaging" and list a couple of its applications
- Discuss some of the other (non 1H) nuclei that can be used in MRS studies
- Explain what is meant by "J-coupling" in 2D MRS
- Consider some of the advantages and limitations of advanced MRS methods

Lecture 2

Title: Advanced 2

Description: Multi-nuclear spectroscopy & applications of spectroscopy Author(s): Dr. Kristin Haga

- Discuss some of the other (non 1H) nuclei that can be used in MRS studies
- Understand applications of spectroscopic techniques in clinical situations

MR Diffusion Imaging

Lecture 1

Title: MR Diffusion Imaging Description: Principles, techniques & applications Author(s): Dr. Mark Bastin **Learning Objectives**

- Define diffusion
- Describe how MR is sensitised to diffusion
- Describe what affects diffusion in vivo
- Explain why fast imaging is needed
- Describe diffusion anisotropy
- List some clinical applications of diffusion MR imaging

MR Permeability Imaging

Lecture 1

Title: MR Permeability Imaging

Description: Imaging endothelial permeability Author(s): Dr. Paul Armitage

- Define what permeability is
- Explain why permeability is interesting to measure in the brain
- Describe how contrast agent concentration can be estimated from the signal change measured following contrast agent administration
- Describe how blood-brain barrier permeability can be estimated from temporal measurements of contrast agent concentration
- Discuss the clinical application of MR permeability imaging to tumour investigation and other disorders

Perfusion Imaging

Lecture 1

Title: Basics

Description: Basic principles of MR perfusion imaging Author(s): Dr. Trevor Carpenter

Learning Objectives

- Define the Central Volume Principle (CVP)
- Describe Contrast Bolus tracking
- Outline the principles of how MR signal is converted to concentration
- List the relative perfusion measures and how they are obtained
- Distinguish between:
 - Cerebral Blood Volume (CBV) and relative CBV
 - Mean Transit Time (MMT) and relative MTT
 - Cerebral Blood Flow (CBF) and relative CBF
- Name some applications of perfusion imaging and outline its role in studying disease

Lecture 2

Title: Advanced

Description: Advanced principles of MR perfusion imaging Author(s): Dr. Trevor Carpenter

- Understand the how the CVP is related to the residue function
- State the process the residue function describes
- Describe the difference between quantitative and relative measures
- Explain a basic approach to quantification
- State the assumptions this approach makes

Functional Imaging Basics

Lecture 1

Title: Neurophysiology techniques

Description: Magnetoencephalography (MEG) & Electroencephalography (EEG) Author(s): Dr. David McGonigle

Learning Objectives

• Discuss the relative strengths and weaknesses of MEG and EEG

Lecture 2

Title: Neurovascular techniques

Description: Principles of Positron Emission Tomography and functional Magnetic Resonance Imaging in assessing function Author(s): Dr. David McGonigle

Learning Objectives

• Discuss the relative strengths and weaknesses of neurovascular techniques as tools for functional neuroimaging

Lecture 3

Title: Applications: Linking Sensation to Spiking

Description: Applying functional imaging techniques to detection of sensory processing Author(s): Dr. David McGonigle

- Describe how physical stimuli are coded by the brain
- Outline the use of functional imaging to detection of sensory processing

SPECT & PET

Lecture 1

Title: Physics Description: Basic principles behind SPECT Author(s): Prof. Jonathan Best

Learning Objectives

- Define what a radionuclide is
- Compare and contrast SPECT and PET
- Identify the differences between radionuclide effective halflife, physical half-life and biological half-life
- Name three radionuclides commonly used in SPECT
- Describe the basic components of a gamma camera
- Discuss why collimation is important in SPECT
- Name at least three methods of image reconstruction
- Discuss how SPECT compares to other imaging modalities in terms of spatial resolution, sensitivity and observational time

Lecture 2

Title: Scanning

Description: Applications of SPECT imaging Author(s): Prof. Jonathan Best

- Outline why Cerebral Blood Flow is used as a proxy marker for brain metabolism
- Describe what is meant by biodistribution and understand how it affects to radiation dose
- Describe how Statistical Parametric Mapping is used in SPECT
- · Identify what the major differences are between dementias when investigated by SPECT

Light Microscopy Basics

Lecture 1

Title: Introduction into Light Microscopy

Description: Basics of optics and essentials of basic and advanced light microscopy Author(s): Dr. Rolly Wiegand

- Discuss the power of light microscopy techniques
- Describe the historical evolution of light microscopes
- State the basics of optics
- Differentiate between essentials of light microscopy and advanced optical technologies

Images – Fundamentals

Lecture 1

Title: Imaging systems

Description: The imaging process, PSF, deconvolution, artefacts & noise Author(s): Prof. Peter Hoskins

Learning Objectives

- State the imaging process
- Define 'imaged quantity' & point spread function
- Describe the imaging process
- Discuss deconvolution and artefacts
- Compare random noise & structured noise (speckle)
- Demonstrate the detection of lesions
- Illustrate effects of contrast, noise, spatial resolution

Lecture 2

Title: Images

Description: Digital image formation, key features; spatial/intensity resolution, resizing and brightness/contrast control

Author(s): Dr. Tom MacGillivray

Learning Objectives

- Describe how a digital image is formed
- Identify the key features of digital images
- Explain spatial and intensity resolution
- Outline how a digital image is resized
- Define brightness and contrast

Lecture 3

Title: Image processing basics

Description: Purpose, key operations, 3D visualisation of medical data and image registration

Author(s): Dr. Tom MacGillivray

Learning Objectives

- Outline the purpose of digital image processing
- Identify key image processing operations
- Differentiate between global & neighbourhood operations
- Describe 3D visualisation of medical image data
- State how image registration is implemented

Lecture 4

Title: Image perception

Description: Anatomy of the eye and vision performance Author(s): Prof. Peter Hoskins

Learning Objectives

• Define the relevant anatomy of the eye

- Compare night and day vision
- Demonstrate log response in brightness discrimination
- State the adaptation range and Weber ratio
- Specify grey level discrimination
- Describe mach bands edge enhancement
- Describe the point spread function of the eye
- Evaluate a model of image perception