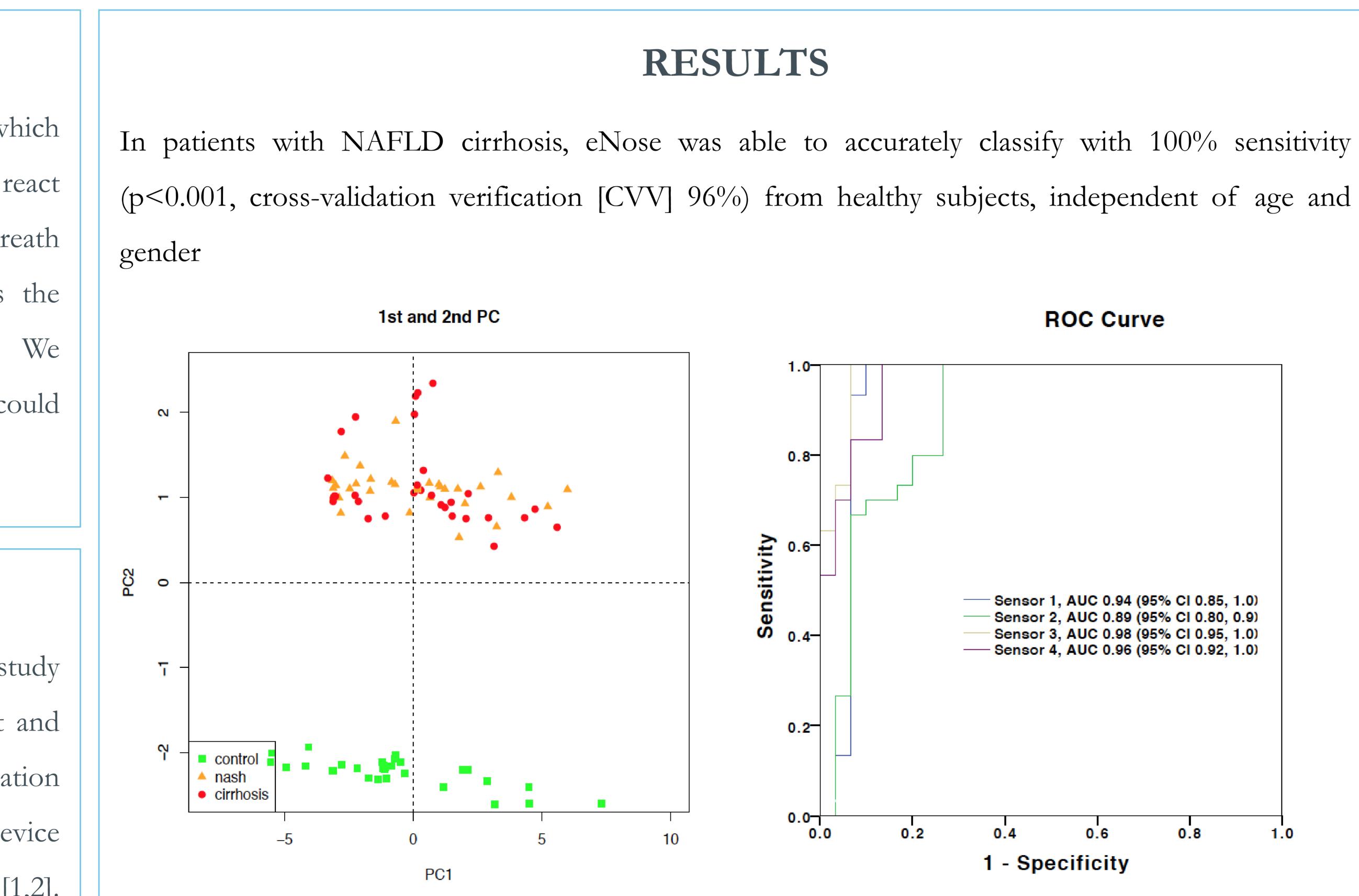


THE INTERNATIONAL LIVER CONGRESS[™] APRIL II-15, PARIS, FRANCE

BACKGROUND AND AIMS

Human breath contains numerous volatile compounds which reflect metabolic activity. Electronic nose (eNose) react rapidly to these volatile metabolites and provide breath prints. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. We hypothesized breath prints obtained from eNose could distinguish healthy individuals from those with NAFLD.

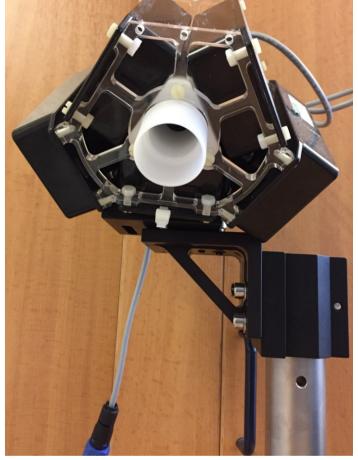

METHODS

The study was prospective single-center cohort study (ClinicalTrials.gov: NCT02950610) with training cohort and one-against all (leave-one out) cross validation verification (CVV). eNose (SpiroNose) is a custom-made device previously validated in respiratory and liver disease [1,2]. eNose was performed on well characterized NAFLD patients; a) Child's A cirrhosis(n=30), b) NAFLD noncirrhosis (n=30) and c) self-declared healthy (n=30). Data were analyzed using R (v 2.3.2). Data reduction to 3 principal components (PCs) explained 97.8% of total variance. Data was further classified by k-nearest neighbor's (k-NN) algorithm, a non-parametric machine learning algorithm for classification.

Electronic-nose breath print distinguishes non-alcoholic fatty liver disease from healthy lean control: a pilot study

Sinha R¹, Gallagher IJ², Lockman KA³, Chamuleau RAFM⁴, Jaap AJ³, Hayes PC¹, Plevris JN¹

¹Hepatology Laboratory and Centre of Liver and Digestive Diseases, Royal Infirmary of Edinburgh and The University of Edinburgh, UK ²Health & Exercise Research Group, University of Stirling, UK ³Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh and The University of Edinburgh, UK ⁴Surgical Laboratory and Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, The Netherlands


Sensor 1, Sensor 2, Sensor 3 and Sensor 4 identified NAFLD cirrhosis patients with AUC 0.96 (standard error=0.043; p<0.001), 0.89 (standard error=0.046; p<0.001), 0.98 (standard error =0.016; p<0.001) and 0.96 (standard error=0.022; p<0.001) respectively eNose was able to differentiate between healthy from; non-cirrhotic NAFLD (p<0.001, CVV 96.8%) and NAFLD cirrhotic (p < 0.001, CVV 95.1%). This method, designed to reflect the generalization property of the k-nearest neighbour's (k-NN) classifier, scored a classification rate of 96%.

CONCLUSIONS

Our study demonstrates the ability of eNose to accurately distinguish NAFLD from healthy individuals.

Thus, eNose technology can provide rapid, noninvasive point-of-care screening to risk stratify patients, which can reduce the burden of liver biopsy.

REFERENCES

- 1. de Vries R, et al. Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 2015;9:046001.
- McDonald N Sinha R, et.al. Exhaled Breath Profiling by Electronic Nose as a Novel Non-Invasive Method for Assessment of Chronic Liver Disease: Proof of Principle Study. Journal of Hepatology 2016;64:S734–S5.

CONTACT INFORMATION

rohit.sinha@nhs.net Rohit Sinha