04 May 24. Featured Paper

An Assessment of the Imaging Performance of Hand-Held Ultrasound Scanners Using the Edinburgh Pipe Phantom

Link to paper on Ultrasound in Medicine and Biology

Authors

Carmel M. Moran, Chris McLeod, Scott Inglis & Stephen D. Pye

Abstract

Objective

Although hand-held ultrasound devices (HHUSDs) are currently used for a diverse range of diagnostic and interventional applications the imaging performance of such scanners is rarely considered. The aim of this study was to assess the imaging performance of a wide-range of HHUSDs and compare their imaging performance to cart-based systems utilized for the same clinical applications.

Methods

The grayscale imaging performances of 19 HHUSDs from eight different manufacturers, manufactured between 2016 and 2021, were measured using a figure-of-merit known as the resolution integral. The imaging performance of the HHUSDs were compared to 142 cart-based ultrasound scanners.

Results

The HHUSD with the overall highest resolution integral (66) was a Butterfly (Burlington, MA, USA) wired phased array for small parts applications, followed by a Philips (Bothell, WA, USA) Lumify wired curvilinear transducer (57) for abdominal applications, a Butterfly wired phased array (56) for abdominal applications, a GE (Freiburg, Baden-Wurttemberg, Germany) VScan Air wireless linear array (56) for small parts applications, and a Healcerion (Seoul, Korea) Sonon 300L wireless linear array (56) for small parts applications. A GE VScan Extend wired phased array had the highest resolution integral (44) for cardiac applications.

Conclusions

The Butterfly phased array had the highest resolution integral of all the 19 HHUSDs, although this value is still less than the majority of cart-based cardiac and abdominal ultrasound scanners manufactured from 2010 to 2017. Clinical users of HHUSDs should be mindful of the limitations in imaging performance of hand-held ultrasound devices.

Keywords:

 

Social media tags and titles

Featured Paper: An Assessment of the Imaging Performance of Hand-Held Ultrasound Scanners Using the Edinburgh Pipe Phantom

 @EdinUniImaging